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Minimum Spanning Tree (MST) is a fundamental structure in graph analytics and can be applied in various

applications. The problem of maintaining MSTs in dynamic graphs is significant, as many real-world graphs

are frequently updated. Existing studies on MST maintenance primarily focus on theoretical analysis and lack

practical efficiency. In this paper, we propose a novel algorithm to maintain MST in dynamic graphs, which

achieves high practical efficiency. In addition to the tree structure, our main idea is to maintain a replacement

edge for each tree edge. In this way, the tree structure can be immediately updated when a tree edge is deleted.

We propose algorithms to maintain the replacement edge for each tree edge by sharing the computation cost

in the updating process. Our performance studies on large datasets demonstrate considerable improvements

over state-of-the-art solutions.
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1 Introduction
Given a weighted undirected graph, a minimum spanning tree (MST) is a subset of the edges that

connects all the vertices together without any cycles and with the minimum possible total edge

weight. When the graph is not connected, we have a minimum spanning forest instead of a single

tree. An example of a weighted graph and its MST is presented in Figure 1. Computing the minimum

spanning tree is a fundamental problem in graph analysis, and the corresponding algorithms are

well studied, such as Kruskal algorithm [23] and Prim algorithm [28]. The problem has a wide range
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Fig. 1. A weighted graph 𝐺 and its MST 𝑇 .

of applications in many fields. For instance, MST can be applied to reduce the cost of distribution

network [26]. A MST for the distribution network consists of paths that connect every house

without forming cycles, which minimizes the total cost of these connections. MST can be used to

reflect economic relationships and analyze monetary systems [30]. In biology analysis, MST can be

used to study biological membranes and wider biological structures [6]. MST is also widely studied

in communication networks [21], transportation planning [2], social network analysis [3], etc.

Many real-world graphs are constantly changing and highly dynamic, where new edges are

inserted and expired edges are deleted [39, 43]. The problem of maintaining MST in dynamic graphs

has also been identified. The technique for MST maintenance can serve as the main subroutine

for a variety of static and dynamic graph algorithms [27], such as tree packing value and edge

connectivity approximation [37], dynamic k-connectivity certificate [7], dynamic minimum cut

[36] and dynamic cut sparsifier [1].

Existing Solutions. Existing works on MST maintenance mainly aim to achieve high theoretical

efficiency. General dynamic tree data structures such as ST-tree [32] and ET-tree [14] can be used to

maintain MSTs. ST-tree supports inserting an edge to the graph and maintains the MST in𝑂 (log𝑛)
time complexity, where 𝑛 is the number of vertices in the graph. However, deleting an edge by

ST-tree is more challenging. The MST is immediately split into two trees when a tree edge is deleted,

and we have to identify whether a non-tree edge can replace the deleted edge and reconnect the

MST. To this end, non-tree edges are scanned in a non-decreasing order of their weights, and the

first one to reconnect the tree will be added to the MST. Querying whether two terminals of an

edge are in the same tree based on ST-tree is 𝑂 (log𝑛), and the total time complexity to delete an

edge is 𝑂 ((𝑚 − 𝑛) log𝑛) as a result where𝑚 is the number of edges. ET-tree can be used together

with ST-tree to speed up the query efficiency, but it is still inevitable to search all non-tree edges in

the worst case [4].

Holm et al. [16] adopts a top-tree data structure to preserve the MST, which achieves a time

complexity of 𝑂 (log4 𝑛) per insertion or deletion. The time complexity is further improved to

𝑂 (log4 𝑛/log log𝑛) time per operation [19]. In this paper, we refer to the algorithm of [19] as HDT,

which is the state-of-the-art algorithm for MST maintenance. They mainly focus on the decremental

algorithm, and the techniques can be extended to the fully dynamic setting. They divide the edges

into different levels. Edges with small weights are assigned to high levels, and those with large

weights are assigned to low levels. When a tree edge is deleted, they first check the local tree

corresponding to the level of the deleted edge and try to find a replacement edge inside. If no

replacement edge is found at the current level, they move to the lower level and repeat the process

until the replacement edge is found. There are also works working on MST maintenance for batch

updates, parallel and distributed algorithms [10]. We introduce them in Section 3.2.

A Basic Framework. To efficiently maintain MST in practice, we first show a basic method by

indexing the parent of each vertex as the structure of MST. A new edge (𝑢, 𝑣) must be a tree edge if

two vertices belong to different trees. If they are already in one MST, we traverse the path between
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𝑢 and 𝑣 in the tree and identify whether an existing tree edge can be replaced by (𝑢, 𝑣). A tree edge

is replaced if it has the highest weight among all edges in the path and its weight is higher than that

of (𝑢, 𝑣). Otherwise, the MST does not update. For edge deletion, deleting a non-tree edge would

not break the correctness of the MST. However, when a tree edge is deleted, we need to search

non-tree edges to identify a replacement edge for the deleted one. Searching the replacement edge

is the main technical challenge in the framework. A straightforward implementation is to scan all

non-tree edges in a non-decreasing order of their weights, and the replacement edge is the first one

in the order that can reconnect the tree after deleting the tree edge. However, the method searches

all non-tree edges in the worst case, and the overall computing cost of deleting a tree edge is very

high.

Maintaing Replacement Edges. We improve the efficiency of deleting tree edges by maintaining

the replacement edge for each tree edge. An immediate benefit is that we can directly derive

the replacement edge for a deleted tree edge, while the replacement edges of certain edges need

to be updated in both edge insertion and edge deletion as a result. Compared with computing

the replacement edge from scratch in the basic solution, we develop novel algorithms to update

replacement edges for all tree edges efficiently. We locate a small set of candidate edges whose

replacement edges need updating in both edge insertion and edge deletion. For edge insertion, we

observe an elegant property and guarantee the constant time complexity to update the replacement

edge for each candidate edge. In this way, maintaining replacement edges does not increase the

time complexity compared with the basic algorithm. For edge deletion, we update the replacement

edges of candidate tree edges in a certain order. In the updating process for each candidate edge,

we fully utilize the previous updated replacement edges and other update-to-date replacement

edges. In this way, we share the computation cost between updating different candidate edges and

significantly improve the efficiency of edge deletion.

Contributions. We summarize our main contributions as follows.

(a) New techniques for maintaining replacement edges. We design a new structure for MST mainte-

nance by additionally indexing the replacement edge for each tree edge. We propose a novel

algorithm to the replacement edges which achieves overall high efficiency in updating the

MST.

(b) Theoretical efficiency analysis. For edge insertion, we prove that our algorithm takes 𝑂 (ℎ)
expected time complexity to maintain the MST, where ℎ is the average vertex depth (the

distance from the vertex to the root of the tree) in the MST. For edge deletion, our algorithm

takes 𝑂 (ℎ(ℎ + 𝑑)) time complexity to maintain the MST, where 𝑑 is the average vertex degree

in the graph.

(c) Outstanding practical performance. We conduct extensive experiments on sixteen real datasets

in various settings. The results demonstrate the significantly higher practical efficiency of our

method compared with the state-of-the-art solution.

Organization. Section 2 defines the research problem. Section 3 introduces related works and

presents a basic method. Section 4 proposes our algorithms. Section 5 reports our experimental

studies. Section 6 concludes the paper.

2 Preliminary
We study an undirected weighted graph 𝐺 (𝑉 , 𝐸) where 𝑉 and 𝐸 are a vertex set and an edge

set, respectively. Each edge 𝑒 is a triplet (𝑢, 𝑣,𝑤) where 𝑢, 𝑣 are two terminals and 𝑤 is the edge

weight, i.e., 𝑤 = 𝑒.𝑤𝑒𝑖𝑔ℎ𝑡 . We use 𝑛 and𝑚 to denote the number of vertices and the number of

edges, respectively, i.e., 𝑛 = |𝑉 |,𝑚 = |𝐸 |. The neighbors of a vertex 𝑢 is represented by 𝑁 (𝑢), i.e.,
𝑁 (𝑢) = {𝑣 ∈ 𝑉 | (𝑢, 𝑣) ∈ 𝐸}. 𝑑 is the average degree of a vertex. Given a tree 𝑇 and two vertices 𝑢, 𝑣 ,
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we use 𝑝𝑎𝑡ℎ(𝑢, 𝑣) to denote the path between 𝑢 and 𝑣 in 𝑇 . We say two vertices are connected if a

path containing both 𝑢 and 𝑣 exists. A tree is a connected graph without any cycle.

Definition 2.1 (Minimum Spanning Tree). Given a weighted graph 𝐺 , a minimum spanning tree

(MST) is a subset of edges of 𝐺 that connects all vertices without any cycle and with the minimum

total edge weight.

A disconnected graph 𝐺 has a minimum spanning forest including MSTs for all connected

components of 𝐺 . For simplicity, we keep using the term MST for a graph that represents a

minimum spanning forest if the graph is disconnected.

Example 2.2. Figure 1 shows an example of a weighted graph𝐺 . There are 6 vertices and 9 edges

in𝐺 . Each edge is marked by an id for reference and a number as the weight. For example, the edge

𝑎 represents (𝑣1, 𝑣2) with a weight of 1. The MST of𝐺 is shown on the right. The total edge weight

of MST is 15.

ProblemDefinition.Given a weighted graph𝐺 , we aim to develop efficient algorithms to maintain

the MST of 𝐺 when a new edge is inserted or an existing edge is deleted.

A dynamic weighted graph involves operations including edge insertions, edge deletions, vertex

insertions, vertex deletions, and updates of edge weights. All these operations can be transferred into

edge insertions and deletions. Specifically, the insertion and deletion of a vertex can be transferred

into the insertion and deletion of all edges associated with that vertex, respectively. The change of

the edge weight can be transferred into the deletion of an old edge followed by the insertion of

a new edge. For simplicity, we assume that the weight of every edge is unique in the rest, which

guarantees only one MST exists. Our algorithm can be easily extended to the scenario that multiple

edges have the same weight.

3 Basic Methods
3.1 Existing Solutions
Most existing studies on MST maintenance mainly focus on improving theoretical efficiency. They

can be divided into two categories. One aims to achieve better worst-case update time for every

update operation [27], and the other aims to achieve better amortized update time over a series of

updates [16, 19].

Worst-Case Studies. The initial breakthrough to address the dynamic MST problem dates back to

Frederickson’s 1985 algorithm, boasting a worst-case update time of 𝑂 (
√
𝑚) [9]. Based on their

method, an 𝑂 (
√
𝑛) update time can be achieved by applying Eppstein et al.’s 1992 sparsification

technique [7]. Christian proposed a Las Vegas data structure for fully-dynamic MST which w.h.p.

handles an update in 𝑂
(
𝑛1/2−𝑐

)
worst-case time while 𝑐 < 0 [41].

Amortized Studies. Henzinger and King provided an 𝑂 (𝑛1/3 log𝑛) amortized update time for

dynamic MST [13]. Holm et al. [16] introduced a deterministic data structure for decremental MST

with an amortized update time of 𝑂 (log2 𝑛). By combining this with a slightly adjusted version of

the reduction from fully-dynamic to decremental MST as proposed by Henzinger and King [12],

they achieved an overall bound of 𝑂 (log4 𝑛) for fully-dynamic MST. Holm et al. further improved

the update time to reach 𝑂 ( log
4 𝑛

log log𝑛
) [19].

Extensive experiments for dynamic MST algorithms were conducted by Cattaneo et al [4]. They

also propose a simple but practically efficient algorithm without strong theoretical guarantee.

Recently, Hanauer further reviewed the studies on dynamic MST algorithms [10]. Algorithms

for batch updates are studied in [25]. There also exist parallel or distributed algorithms for MST

[8, 24, 38]. [8] proposed parallel methods to compute MSTs in static directed graphs. However,
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this algorithm does not support dynamic updates. Parallel algorithms for MST maintenance are

only studied in some theoretical works. They can be classified into two categories. The first type

targets on batch updates. Given a batch of 𝑘 insertions or deletions, the batch-dynamic MST

algorithm proposed in [38] runs in 𝑂 (𝑘 log6 𝑛) expected amortized work and 𝑂 (log4 𝑛) span with

high probability. However, the algorithm does not work well for a single update. It also cannot be

applied to a mixed batch of updates including both insertions and deletions (e.g., in the sliding

window model). The second type targets on parallel single edge updates. A theoretical approach

proposed in [24] handles an edge update in MSF using 𝑂 (
√
𝑛) processors and 𝑂 (log𝑛) worst-case

update time, with a total of 𝑂 (
√
𝑛 log𝑛) work. However, this method is not practical because it

requires too many processors for large-scale graphs. For example, the dataset "edit-enwik" we used

in experiment has 50,757,444 nodes, and [24] needs 7,124 processors to update one edge for the

dataset.

3.2 Other Related Works
Connectivity in Dynamic Graphs. Connectivity algorithms have been developed for updating

spanning trees. Henzinger and King [11, 14] introduce a method that represents spanning trees

using Euler tours [34], which includes additional information to facilitate the early termination of

the search for a replacement edge. Holm et al. [15, 17] proposes a novel structure that improves

the update efficiency of the index to 𝑂 (log2 𝑛). Huang et al. [20] further reduce the theoretical

time complexity to 𝑂 (log𝑛(log log𝑛)2). Recently, Chen et al. [5] introduces a new data structure

based on spanning tree called D-Tree to improve the connectivity query efficiency practically. [42]

further proposes constant time connectivity query algorithms on dynamic graphs.

Historical Queries in Dynamic Graphs. The problem of efficiently answering queries for a

graph snapshot of a specific time window is called historical graph queries[22, 29]. Many studies

of Historical Queries have appeared in recent years. [40] proposed an index-based solution based

on the concept of two-hop cover to answer historical connectivity queries. [33] further proposed

a novel index for historical connectivity queries and sliding-window connectivity queries. The

problem of efficiently querying historical 𝑘-cores in a large temporal graph is studied in [44].

3.3 A Non-Trivial Baseline
To efficiently maintain MST in practice, we discuss a non-trivial baseline in this section. Given a

MST, we categorize edges into two types. Edges that belong to the tree are called tree edges, and

others are called non-tree edges. A straightforward structure for MST is maintaining the parent

of each vertex in the tree where the tree root does not have a parent. We first consider inserting

a new edge (𝑢, 𝑣), and it includes two cases. Case A means that the new edge is a tree edge, and

Case B means that the new edge is a non-tree edge. The insertion algorithm aims to identify these

two cases.

- Case A.1. (𝑢, 𝑣) is a tree edge immediately if 𝑢 and 𝑣 are in different MSTs (i.e., connected

components). We call this Case A.1. To test their connectivity, we search from 𝑢 and 𝑣 to their

roots, respectively, and check whether their roots are the same. The time complexity is 𝑂 (ℎ),
where ℎ is the average vertex depth in the MST. If the roots are different, the new edge is a tree

edge, and two old MSTs are merged into one MST by the new edge.

- Case A.2. If 𝑢 and 𝑣 have the same MST root, the old MST is still a spanning tree of the updated

graph. However, the total weight of the spanning tree may not be the minimum given the new

edge. The new edge (𝑢, 𝑣) and the path between 𝑢, 𝑣 in the old MST form a cycle. Let 𝑒 be the

edge with the largest weight in the cycle. If 𝑒 is not (𝑢, 𝑣), replacing 𝑒 with (𝑢, 𝑣) will produce a
spanning tree with a minimum total weight. We call this Case A.2, where (𝑢, 𝑣) is a tree edge in
the new MST. Let𝑤 be the lowest common ancestor of 𝑢 and 𝑣 . The cycle contains the path from

𝑢 to𝑤 and the path from 𝑣 to𝑤 . Therefore, it takes 𝑂 (ℎ) time complexity to identify𝑤 and all
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edges in the cycle. To replace 𝑒 with 𝑢, 𝑣 , we cut the tree by deleting 𝑒 , rotate the tree of 𝑣 to make

𝑣 as the root, and assign 𝑢 as the parent 𝑣 . The replacement process is also bounded by 𝑂 (ℎ).
- Case B. If (𝑢, 𝑣) is the edge with the maximum weight in the cycle, inserting (𝑢, 𝑣) would not

break the correctness of the MST, and the new edge is a non-tree edge. We call this Case B.

We then discuss deleting an existing edge (𝑢, 𝑣). Case C means that (𝑢, 𝑣) is a tree edge in the

existing MST, and Case D means that (𝑢, 𝑣) is a non-tree edge. We do nothing for the Case D since

a MST is still valid after removing any non-tree edge. For the Case C, removing (𝑢, 𝑣) immediately

disconnects the tree into two subtrees, and we need to identify if an edge exists to replace (𝑢, 𝑣)
and reconnect the MST.

Definition 3.1 (Replacement Edge). Given a graph 𝐺 , a MST 𝑇 of 𝐺 , and a tree edge 𝑒 , an edge 𝑒′

is the replacement edge of 𝑒 if replacing 𝑒 with 𝑒′ in 𝑇 produces the MST of 𝐺 after removing 𝑒 .

Based on Definition 3.1, the Case C is categorized into the following two sub-cases:

- Case C.1 means no replacement edge is found because removing (𝑢, 𝑣) disconnects the graph.
We leave the two MSTs as the result.

- Case C.2 means a replacement edge is found. We apply the similar process of the Case A.2 to

reconnect the MST.

The following lemma indicates the properties of the replacement edge. The lemma is straightforward

based on the definition of MST, and we omit the detailed proof.

Lemma 3.2. A non-tree edge 𝑒′ is a replacement edge of 𝑒 if and only if (1) 𝑒′ connects two trees
after removing 𝑒 , and (2) 𝑒′ has the minimum weight among all edges satisfying the first condition.

Example 3.3. Consider the graph in Figure 1. Assume the edge 𝑏 is deleted. The replacement

edge is 𝑔 because it has the smallest weight among all edges reconnecting 𝑣3 to the rest of the MST.

Searching the Replacement Edge. Based on Lemma 3.2, a straightforward approach to find the

replacement edge is iterating over all non-tree edges in non-decreasing order of their weights. The

iteration terminates once an edge connecting two trees is identified, and the edge is the replacement

edge. The replacement edge does not exist (Case C.1) if no edge reconnects two trees. The method

takes𝑂 (𝑚) to search the replacement edge. In the worst case, all non-tree edges are scanned, which

is clearly not scalable for large-scale graphs. Searching the replacement edge after deleting a tree

edge is the most time-consuming operation and the main challenge in MST maintenance. Our

techniques mainly focus on how to reduce the large traversal time in searching the replacement

edge.

4 Our Approach
4.1 The DMST Structure
We propose a novel approach for MST maintenance. Our main idea is to maintain the non-tree

replacement edge for each tree edge. An immediate benefit is the 𝑂 (1) time complexity to get the

replacement edge after deleting any tree edge. However, after the MST updates, the replacement

edges for certain tree edges may be expired. Compared with the basic solution, our improved

method mainly focuses on how to efficiently update the replacement edge for each tree edge.

Before discussing the updating algorithms, we formally define the data structure maintained in our

improved method which is called dynamic minimum spanning tree (DMST). The data structure

includes several attributes for each vertex 𝑢 in the tree:
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Fig. 2. An example DMST structure.
- 𝑢.𝑖𝑑 // the id of the corresponding vertex;

- 𝑢.𝑠𝑡_𝑠𝑖𝑧𝑒 // the number of descendants of 𝑢;

- 𝑢.𝑝𝑎𝑟𝑒𝑛𝑡 // the parent of 𝑢;

- 𝑢.𝑤𝑒𝑖𝑔ℎ𝑡 // the weight of (𝑢,𝑢.𝑝𝑎𝑟𝑒𝑛𝑡);
- 𝑢.𝑟𝑒𝑝 // the replacement edge of (𝑢,𝑢.𝑝𝑎𝑟𝑒𝑛𝑡).
Given a vertex 𝑢 in the tree, we use 𝑢 to represent 𝑢.𝑖𝑑 for simplicity when the context is clear.

The subtree size 𝑢.𝑠𝑡_𝑠𝑖𝑧𝑒 is maintained in algorithms to reduce the average vertex depth in the

tree practically. We have 𝑢.𝑝𝑎𝑟𝑒𝑛𝑡 = ∅ if 𝑢 is the root of a MST. When no edge can reconnect the

tree after deleting a tree edge (𝑢,𝑢.𝑝𝑎𝑟𝑒𝑛𝑡), we have 𝑢.𝑟𝑒𝑝 = ∅. We say the replacement edge of a

vertex 𝑢 for short to represent the replacement edge of the tree edge between 𝑢 and 𝑢.𝑝𝑎𝑟𝑒𝑛𝑡 . We

maintain the replacement edge 𝑢.𝑟𝑒𝑝 as a directed edge where the descendent of 𝑢 in the MST is

the source vertex, and the other one is the destination vertex. The following lemma demonstrates

that the descendent must exists.

Lemma 4.1. Given a vertex 𝑢, assume that a replacement edge 𝑢.𝑟𝑒𝑝 exists. There is one and only
one vertex 𝑣 in 𝑢.𝑟𝑒𝑝 such that 𝑢 is the ancestor of 𝑣 in the MST (𝑣 can be 𝑢 itself).

Proof. The lemma is straightforward because the replacement edge reconnects the subtree of 𝑢

to the MST, and one terminal of the replacement edge must be in the subtree of 𝑢. □

We use 𝑢.𝑟𝑒𝑝.𝑠𝑟𝑐 and 𝑢.𝑟𝑒𝑝.𝑑𝑒𝑠𝑡 to represent the source vertex and the destination vertex, re-

spectively. The edge direction is used to improve the efficiency of the deletion algorithm, which

will be discussed later.

Example 4.2. Figure 2 shows an example of DMST for the weighted graph 𝐺 in Figure 1. The

id next to each vertex is the corresponding replacement edge 𝑟𝑒𝑝 . We omit 𝑠𝑡_𝑠𝑖𝑧𝑒 in Figure 2.

Taking 𝑣2 as an example, the parent of 𝑣2 is 𝑣1, and the tree edge (𝑣2, 𝑣1) has weight 1. The edge 𝑔
is a replacement edge of (𝑣2, 𝑣1), i.e., 𝑣2 .𝑟𝑒𝑝 is 𝑔(𝑣5, 𝑣3, 6). 𝑣2 has a total of 3 descendants, namely

{𝑣2, 𝑣5, 𝑣6}.

The space complexity of our index structure is clearly bounded by the graph size. Existing

algorithms [16, 19] also have linear space complexity but use relatively complex structure compared

to our solution.

Basic Operations for Tree Structure. Based on the DMST structure, we introduce several basic

operations in Algorithm 1, which will be used in our final insertion and deletion algorithms. They

provide essential ways to manipulate the parent-children relationship in the tree structure, which

enables us to only care if any edge should be moved between the tree edge set and the non-tree

edge set in edge updates. The operations mainly focus on the tree structure and do not involve

potential replacement edge updates.
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Algorithm 1: Tree Operations
1 Procedure Link-Root(𝑢, 𝑣,𝑤)
2 𝑢.𝑝𝑎𝑟𝑒𝑛𝑡 ← 𝑣 ;

3 𝑢.𝑤𝑒𝑖𝑔ℎ𝑡 ← 𝑤 ;

4 𝑣 .𝑠𝑡_𝑠𝑖𝑧𝑒 ← 𝑣 .𝑠𝑡_𝑠𝑖𝑧𝑒 + 𝑢.𝑠𝑡_𝑠𝑖𝑧𝑒 ;
5 𝑢.𝑟𝑒𝑝 ← Null;

6 Procedure Cut(𝑢, 𝑣)
7 𝑢.𝑝𝑎𝑟𝑒𝑛𝑡 ← Null, 𝑢.𝑤𝑒𝑖𝑔ℎ𝑡 ← Null, 𝑢.𝑟𝑒𝑝 ← Null;
8 while 𝑣 ≠ Null do
9 𝑣 .𝑠𝑡_𝑠𝑖𝑧𝑒 ← 𝑣 .𝑠𝑡_𝑠𝑖𝑧𝑒 − 𝑢.𝑠𝑡_𝑠𝑖𝑧𝑒 ;

10 𝑣 ← 𝑣 .𝑝𝑎𝑟𝑒𝑛𝑡 ;

11 Procedure Reroot(𝑢)
12 if 𝑢.𝑝𝑎𝑟𝑒𝑛𝑡 = Null then return;
13 𝑣 ← 𝑢.𝑝𝑎𝑟𝑒𝑛𝑡 𝑤 ← 𝑢.𝑤𝑒𝑖𝑔ℎ𝑡 ;

14 Reroot(𝑣);
15 𝑣 .𝑝𝑎𝑟𝑒𝑛𝑡 ← 𝑢, 𝑣 .𝑤𝑒𝑖𝑔ℎ𝑡 ← 𝑤 ;

16 𝑢.𝑝𝑎𝑟𝑒𝑛𝑡 ← Null, 𝑢.𝑤𝑒𝑖𝑔ℎ𝑡 ← Null;
17 𝑣 .𝑠𝑡_𝑠𝑖𝑧𝑒 ← 𝑣 .𝑠𝑡_𝑠𝑖𝑧𝑒 − 𝑢.𝑠𝑡_𝑠𝑖𝑧𝑒;
18 𝑢.𝑠𝑡_𝑠𝑖𝑧𝑒 ← 𝑣 .𝑠𝑡_𝑠𝑖𝑧𝑒 + 𝑢.𝑠𝑡_𝑠𝑖𝑧𝑒;
19 (𝑥,𝑦,𝑤) ← 𝑢.𝑟𝑒𝑝;

20 𝑢.𝑟𝑒𝑝 ← Null;
21 𝑣 .𝑟𝑒𝑝 ← (𝑦, 𝑥,𝑤);
22 Procedure Replace(𝑢, 𝑣,𝑤,𝑢′, 𝑣 ′,𝑤 ′)
23 Cut(𝑢, 𝑣);
24 Reroot(𝑢′), Reroot(𝑣 ′);
25 if 𝑢′ .𝑠𝑡_𝑠𝑖𝑧𝑒 > 𝑣 ′ .𝑠𝑡_𝑠𝑖𝑧𝑒 then swap(𝑢′, 𝑣 ′);
26 Link-Root(𝑢′, 𝑣 ′,𝑤 ′);

Link-Root() connects the roots of two trees and updates the subtree size accordingly. The vertex

𝑣 is the root of the merged tree.𝑤 is the weight of edge (𝑢, 𝑣). The time complexity of Link-Root
is 𝑂 (1). Cut() deletes an edge (𝑢, 𝑣) from the tree where 𝑣 is the parent of 𝑢. 𝑢 will be the root of

one tree. The procedure also corrects the subtree size of every vertex from 𝑣 to the root given the

removal of the subtree of 𝑢. The time complexity of Cut is 𝑂 (ℎ). Reroot() does not change any
tree edge. It rotates the tree to make 𝑢 as the tree root. The procedure runs recursively. After line

14, 𝑣 is the tree root. We exchange the parent-child roles of 𝑢 and 𝑣 in lines 15–16 and update the

subtree size in lines 17–18. Recall that 𝑢.𝑟𝑒𝑝 in line 19 is a directed edge, where 𝑥 is a descendant

of 𝑢. After the rotation, 𝑢 is the root, and all old descendants of 𝑢 are excluded from those of 𝑣 .

Therefore, 𝑦 is now a descendant of 𝑣 , but 𝑥 is not. We reverse the direction of the replacement

edge and assign it to 𝑣 .𝑟𝑒𝑝 in line 21. The time complexity of Reroot is𝑂 (ℎ). Replace() replaces an
existing tree edge (𝑢, 𝑣,𝑤) with a new edge (𝑢′, 𝑣 ′,𝑤 ′). The tree is disconnected into two subtrees

after removing (𝑢, 𝑣,𝑤). We rotate the two trees to make 𝑢′ and 𝑣 ′ as roots, respectively. We merge

the smaller one into the larger one.

4.2 Observation on Replacement Edges
We now analyze the potential change of replacement edges when updating the MST.
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Edge Insertion Cases Edge Deletion Cases

A.1 A.2 B C.1 C.2 D

Event N+ ✓ ✓
Event N− ✓ ✓
Event T+ ✓ ✓

Table 1. Events that trigger updating replacement edges in different cases.

Lemma 4.3. Given the MST 𝑇 for a graph 𝐺 , let 𝑇 ′ be the MST for the graph 𝐺 ′ by inserting or
deleting an edge from 𝐺 . The replacement edge of every tree edge in 𝑇 does not change if the non-tree
edges do not change, i.e., 𝐺 \𝑇 = 𝐺 ′ \𝑇 ′.

Proof. 𝐺 \𝑇 = 𝐺 ′ \𝑇 ′ happens in two cases. The first case is that a new edge is inserted, and

the edge connects two existing trees. The second case is that a tree edge is deleted, and no existing

edge can reconnect the trees. In both cases, the path in the tree between two terminals of any

non-tree edge does not change. Therefore, the replacement edge does not update. □

Lemma 4.3 shows that updates of replacement edges are mainly caused by the update of non-tree

edges. The lemma only concerns existing edges in𝑇 , and we also need to compute the replacement

edges for any new tree edges in MST maintenance. Therefore, when edges arrive, depart, or switch

between the two roles in MST maintenance, we summarize the following three events that will

trigger the update of replacement edges.

- Event N+ represents an edge 𝑒 is added into non-tree edges. Certain tree edges may update their

replacement edges to 𝑒 .

- Event N− represents an edge 𝑒 is excluded from non-tree edges. The tree edges with the replace-

ment edge of 𝑒 need to compute a new replacement edge.

- Event T+ represents an edge 𝑒 is added into tree edges. A replacement edge should be computed

for the new tree edge 𝑒 .

Note that we do not update replacement edges when an edge is excluded from the tree edge set,

and we call this Event T−. Based on Lemma 4.3, only the Event T− would not trigger any update of

replacement edges. An instance of the Event T− is the Case C.1 of edge deletion where the MST

is disconnected into two MSTs. Table 1 presents the events that happened in each case of edge

updates. We will discuss more details when proposing algorithms for edge insertions and deletions.

We will show that the correct replacement edges can be immediately derived in edge insertions

based on an elegant property. Our main technical challenge lies in edge deletions where a novel

algorithm will be developed to search replacement edges.

4.3 Edge Insertion
In this section, we propose our final edge insertion algorithm. The pseudocode is presented in

Algorithm 2. Lines 1–6 first identify whether 𝑢 and 𝑣 have the same root. If so, the loop terminates

at the LCA of 𝑢 and 𝑣 , where both 𝑓 𝑢 and 𝑓 𝑣 are the LCA. The edge with the maximum weight in

the searching path is also recorded as a by-product (lines 4–5). When 𝑢 and 𝑣 have the same root,

the searching path is the path connecting them in the tree.

Case A.1. Once any of 𝑓 𝑢 and 𝑓 𝑣 is Null, we already reach the root of one tree in the loop of line 2,

and two vertices are not connected. We are now in Case A.1 (lines 7–10). Without any non-tree

edge updates, we do not need to update the replacement edge of any existing tree edge. The new

tree edge (𝑢, 𝑣) is the only one that can connect two existing MSTs. No other edge can replace (𝑢, 𝑣)
if it is deleted. Therefore, we leave the replacement edge of (𝑢, 𝑣) as Null (initialized in Link-Root).
Case B. If 𝑢 and 𝑣 are in the same tree but (𝑢, 𝑣) has the maximum weight compared with all edges

in the path between them, we fall in Case B (line 11), where the tree structure is constant. In this
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Algorithm 2: DMST-Insert
Input: a new edge 𝑒 (𝑢, 𝑣,𝑤)
Output: the updated MST

1 𝑓 𝑢 ← 𝑢, 𝑓 𝑣 ← 𝑣,𝑚𝑎𝑥_𝑒 ← 𝑒;

2 while 𝑓 𝑢 ≠ Null ∧ 𝑓 𝑣 ≠ Null ∧ 𝑓 𝑢 ≠ 𝑓 𝑣 do
3 if 𝑓 𝑢.𝑠𝑡_𝑠𝑖𝑧𝑒 > 𝑓 𝑣 .𝑠𝑡_𝑠𝑖𝑧𝑒 then swap(𝑓 𝑢, 𝑓 𝑣);
4 if 𝑓 𝑢.𝑤𝑒𝑖𝑔ℎ𝑡 > 𝑚𝑎𝑥_𝑒.𝑤𝑒𝑖𝑔ℎ𝑡 then
5 𝑚𝑎𝑥_𝑒 ← 𝑓 𝑢.𝑝𝑎𝑟𝑒𝑛𝑡 ;

6 𝑓 𝑢 ← 𝑓 𝑢.𝑝𝑎𝑟𝑒𝑛𝑡 ;

/* Case A.1 */

7 if 𝑓 𝑢 = Null ∨ 𝑓 𝑣 = Null then
8 Reroot(𝑢), Reroot(𝑣);
9 if 𝑢.𝑠𝑡_𝑠𝑖𝑧𝑒 > 𝑣 .𝑠𝑡_𝑠𝑖𝑧𝑒 then swap(𝑢, 𝑣);

10 Link-Root(𝑢, 𝑣,𝑤);
/* Case B */

11 else if 𝑚𝑎𝑥_𝑒 = 𝑒 then Update-Rep(𝑒);
/* Case A.2 */

12 else
13 Replace(𝑚𝑎𝑥_𝑒, 𝑒);
14 Update-Rep(𝑚𝑎𝑥_𝑒);

15 Procedure Update-Rep(𝑢, 𝑣,𝑤)
16 𝑓 𝑢 ← 𝑢, 𝑓 𝑣 ← 𝑣 ;

17 while 𝑓 𝑢 ≠ 𝑓 𝑣 do
18 if 𝑓 𝑢.𝑠𝑡_𝑠𝑖𝑧𝑒 > 𝑓 𝑣 .𝑠𝑡_𝑠𝑖𝑧𝑒 then
19 swap(𝑓 𝑢, 𝑓 𝑣), swap(𝑢, 𝑣)
20 if 𝑓 𝑢.𝑟𝑒𝑝 = Null ∨𝑤 < 𝑓 𝑢.𝑟𝑒𝑝.𝑤𝑒𝑖𝑔ℎ𝑡 then
21 𝑓 𝑢.𝑟𝑒𝑝 ← (𝑢, 𝑣,𝑤);
22 𝑓 𝑢 ← 𝑓 𝑢.𝑝𝑎𝑟𝑒𝑛𝑡 ;

case, a new non-tree edge appears as summarized in Table 1. The replacement edges of some tree

edges may be updated to the new non-tree edge. Based on Lemma 3.2, (𝑢, 𝑣) is the replacement

edge of a tree edge 𝑒 only if 𝑒 is in the tree path between 𝑢 and 𝑣 . Therefore, to update potential

replacement edges, we call Update-Rep().
Update-Rep() updates the replacement edges of all affected tree edges given a non-tree edge

(𝑢, 𝑣,𝑤). Based on the first condition of Lemma 3.2, (𝑢, 𝑣) is the replacement edge of a tree edge 𝑒

only if 𝑒 is in the tree path between 𝑢 and 𝑣 . The procedure always moves from the vertex with a

smaller subtree size towards the root, and this guarantees 𝑓 𝑢 and 𝑓 𝑣 meet at the lowest common

ancestor of 𝑢 and 𝑣 . For each edge in the path, we check if 𝑤 is smaller than the weight of the

existing replacement edge (line 20). If so, the replacement edge is updated. The time complexity of

Update-Rep is 𝑂 (ℎ).

Example 4.4. Figure 3 shows an example of Case B. We insert an edge𝑚(𝑣4, 𝑣6, 8) to the graph.

We find 𝑣4 and 𝑣6 are in the same DMST in Figure 2, and there exists a 𝑝𝑎𝑡ℎ(𝑣4, 𝑣6) = {𝑣6, 𝑣5, 𝑣2, 𝑣1, 𝑣4}
in the DMST. The weight of each edge in this path is smaller than 7. This indicates that edge𝑚 is a

non-tree edge, and we only need to update the 𝑟𝑒𝑝 of tree edges in the path. The original 𝑟𝑒𝑝 of
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Fig. 3. Case B: Insert a non-tree edge𝑚(𝑣4, 𝑣6, 8).
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Fig. 4. Case A.2: Insert tree edge 𝑙 (𝑣4, 𝑣6, 2).
tree edge (𝑣5, 𝑣6, 5) is ℎ, and the𝑤𝑒𝑖𝑔ℎ𝑡 of ℎ is greater than𝑚. Therefore, we assign𝑚(𝑣6, 𝑣4, 8) as
the new 𝑟𝑒𝑝 of the tree edge 𝑖 (𝑣6, 𝑣5, 5). The 𝑟𝑒𝑝 of other tree edges are consistent.

Case A.2. If (𝑢, 𝑣) is not the edge with the maximum weight (i.e., (𝑢, 𝑣) ≠𝑚𝑎𝑥_𝑒), we fall in Case

A.2, and we need to replace the existing tree edge𝑚𝑎𝑥_𝑒 with (𝑢, 𝑣). In this case, a new non-tree

edge (Event N+) and a new tree edge (Event T+) appear. For the new non-tree edge, we invoke

Update-Rep(𝑚𝑎𝑥_𝑒) (line 15) to update the replacement edges of affected tree edges, which is

similar to Case B. For the new tree edge 𝑒 , we need to assign a replacement edge to 𝑒 . Instead of

computing the replacement edge from scratch, we can efficiently derive the replacement edge based

on the following lemma.

Lemma 4.5. Given a new edge 𝑒 and an existing tree edge 𝑒′ in MST, assume 𝑒′ is replaced by 𝑒 in
the updated MST (Case A.2). The replacement edge of 𝑒 is 𝑒′.

Proof. We prove it by contradiction. Assume the replacement edge of 𝑒 is 𝑒′′, and 𝑒′′ ≠ 𝑒′. We

can replace 𝑒′ with 𝑒′′ in the original MST and produce a spanning tree with smaller weight. This

contradicts the definition of MST. □

Lemma 4.5 indicates that the replacement edge of the new tree edge 𝑒 can be derived in 𝑂 (1)
time. To this end, the procedure Replace in line 14 initializes an empty replacement edge for the

new tree edge 𝑒 , which will be assigned as𝑚𝑎𝑥_𝑒 in Update-Rep (line 21).

Example 4.6. Figure 4 shows an example of Case A.2. Given a graph 𝐺 and its DMST shown in

Figure 2, we insert an edge 𝑙 (𝑣4, 𝑣6, 2). We first determine the type of the edge. 𝑣4 and 𝑣6 are in the

same DMST in Figure 2. In the path between 𝑣4 and 𝑣6, 𝑖 (𝑣6, 𝑣5, 5) is the tree edge with the largest

weight, and its weight is smaller than 𝑙 . Therefore, we know 𝑙 will be a new tree edge. We cut the

edge 𝑖 (𝑣6, 𝑣5, 5) and use the new edge 𝑙 to connect 𝑣4 and 𝑣6. Next, we can call Update-Rep() to
check if the 𝑟𝑒𝑝 of the tree edges in the path between 𝑣5 and 𝑣6 need to be updated. The 𝑟𝑒𝑝 of the

tree edge 𝑒 (𝑣5, 𝑣2, 4) is edge 𝑔(𝑣5, 𝑣3, 9). Its weight is greater than edge 𝑖 . We can update the 𝑟𝑒𝑝

of the tree edge 𝑒 (𝑣5, 𝑣2, 4) to the new non-tree edge 𝑖 . The same update operation applies to tree

edges (𝑣2, 𝑣1, 1), (𝑣4, 𝑣1, 3) and (𝑣6, 𝑣4, 2).
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Algorithm 3: DMST-Delete
Input: an existing edge 𝑒 (𝑢, 𝑣,𝑤)
Output: the updated MST

1 if 𝑠𝑡_𝑠𝑖𝑧𝑒 (𝑢) > 𝑠𝑡_𝑠𝑖𝑧𝑒 (𝑣) then swap(𝑢, 𝑣);
2 if 𝑢.𝑝𝑎𝑟𝑒𝑛𝑡 = 𝑣 then
3 if 𝑢.𝑟𝑒𝑝 = Null then

/* Case C.1 */

4 Cut(𝑢, 𝑣);
5 return;

/* Case C.2 */

6 (𝑢′, 𝑣 ′,𝑤 ′) ← 𝑢.𝑟𝑒𝑝;

7 Replace(𝑢, 𝑣,𝑤,𝑢′, 𝑣 ′,𝑤 ′);
8 Update-Rep(𝑢, 𝑣,𝑤);
/* Case D: delete non-tree edge 𝑒 */

9 Reroot(𝑣);
10 𝑐𝑎𝑛𝑑 ← ∅, 𝑐𝑎𝑛𝑑1← ∅, 𝑐𝑎𝑛𝑑2← ∅;
11 foreach 𝑥 from 𝑢 to 𝑣 do
12 if 𝑥 .𝑟𝑒𝑝 ≠ (𝑢, 𝑣,𝑤) then continue;
13 𝑥 .𝑟𝑒𝑝 ← Null;
14 𝑐𝑎𝑛𝑑.𝑝𝑢𝑠ℎ(𝑥);
15 foreach 𝑖 from 0 to |𝑐𝑎𝑛𝑑 | − 1 do
16 𝑥 ← 𝑐𝑎𝑛𝑑 [𝑖];
17 if 𝑠𝑡_𝑠𝑖𝑧𝑒 (𝑥) ∗ 2 > 𝑠𝑡_𝑠𝑖𝑧𝑒 (𝑣) then
18 foreach 𝑗 from |𝑐𝑎𝑛𝑑 | − 1 to 𝑖 do
19 𝑐𝑎𝑛𝑑2.𝑝𝑢𝑠ℎ(𝑐𝑎𝑛𝑑 [ 𝑗] .𝑝𝑎𝑟𝑒𝑛𝑡);
20 Reroot(𝑥);
21 break;

22 𝑐𝑎𝑛𝑑1.𝑝𝑢𝑠ℎ(𝑥);
23 Search(𝑐𝑎𝑛𝑑1, 𝑒), Search(𝑐𝑎𝑛𝑑2, 𝑒);

Theorem 4.7. The time complexity of Algorithm 2 is 𝑂 (ℎ).

Proof. The time complexity of Update-Rep(𝑢, 𝑣,𝑤) is 𝑂 (ℎ). In addition, only basic operations

with a time complexity of 𝑂 (ℎ) are used in Algorithm 2. Therefore, the time complexity of Algo-

rithm 2 is 𝑂 (ℎ). □

4.4 Edge Deletion
We study the algorithm for edge deletion in this section. Our framework is presented in Algorithm 3.

Lines 2–8 deal with the Case C where a tree edge is deleted. For Case C.1, we simply cut the tree

in line 4. For Case C.2, our strategy first replaces the tree edge (𝑢, 𝑣,𝑤) with its replacement edge.

Then, the problem will be transferred into the Case D (i.e., deleting a non-tree edge). Specifically,

we add the replacement edge (𝑢′, 𝑣 ′,𝑤 ′) into the tree in line 7. We update the replacement edges

given the temporary new non-tree edge (𝑢, 𝑣,𝑤). After line 8, we update replacement edges of

certain tree edges given the deletion of a non-tree edge (Event N−), which happens in both Case

C.2 and Case D.
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Algorithm 4: Search
Input: an order of tree nodes 𝑐𝑎𝑛𝑑

Output: 𝑐𝑎𝑛𝑑 with updated replacement edges

1 foreach 𝑖 from 0 to |𝑐𝑎𝑛𝑑 | − 1 do
2 D(𝑐𝑎𝑛𝑑 [𝑖]) ← |𝑐𝑎𝑛𝑑 | − 𝑖;
3 foreach 𝑖 from 0 to |𝑐𝑎𝑛𝑑 | − 1 do
4 Q ← an empty priority queue;

5 𝑢 ← 𝑐𝑎𝑛𝑑 [𝑖], 𝑢𝑟𝑤 ← +∞, Q .𝑖𝑛𝑠𝑒𝑟𝑡 (⟨𝑢𝑟𝑤,𝑢⟩);
6 while Q ≠ ∅ do
7 𝑥 ← Q .𝑡𝑜𝑝 ().𝑣𝑎𝑙𝑢𝑒, 𝑥𝑟𝑤 ← Q .𝑡𝑜𝑝 () .𝑘𝑒𝑦, Q .𝑝𝑜𝑝 ();
8 if 𝑢𝑟𝑤 ≤ 𝑥𝑟𝑤 then break;
9 if 𝑥 ≠ 𝑢 ∧ 𝑥 .𝑟𝑒𝑝 ≠ Null then
10 (𝑠, 𝑡,𝑤) ← 𝑥 .𝑟𝑒𝑝 ;

11 if Compute-LCAD(𝑡) > D(𝑢) then
12 𝑢.𝑟𝑒𝑝 ← 𝑥 .𝑟𝑒𝑝 ;

13 break;

14 𝑛𝑡_𝑠𝑒𝑎𝑟𝑐ℎ ← True;
15 foreach ⟨𝑦,𝑦𝑤⟩ ∈ 𝑁 (𝑥) do
16 if 𝑦 = 𝑥 .𝑝𝑎𝑟𝑒𝑛𝑡 then continue;
17 else if 𝑥 = 𝑦.𝑝𝑎𝑟𝑒𝑛𝑡 then
18 if 𝑦.𝑟𝑒𝑝 = Null then continue;
19 if 𝑦.𝑟𝑒𝑝.𝑤𝑒𝑖𝑔ℎ𝑡 < 𝑢𝑟𝑤 then
20 Q .𝑖𝑛𝑠𝑒𝑟𝑡 (⟨𝑦.𝑟𝑒𝑝.𝑤𝑒𝑖𝑔ℎ𝑡,𝑦⟩);
21 else
22 if 𝑛𝑡_𝑠𝑒𝑎𝑟𝑐ℎ = False then continue;
23 if 𝑦𝑤 ≥ 𝑢𝑟𝑤 then continue;
24 if 𝑥 ≠ 𝑢 ∧ 𝑥𝑟𝑤 > 𝑦𝑤 then continue;
25 if Compute-LCAD(𝑦) < D(𝑢) then
26 𝑢.𝑟𝑒𝑝 ← 𝑥 .𝑟𝑒𝑝 , 𝑢𝑟𝑤 ← 𝑢.𝑟𝑒𝑝.𝑤𝑒𝑖𝑔ℎ𝑡 ;

27 𝑛𝑡_𝑠𝑒𝑎𝑟𝑐ℎ ← False;

28 Procedure Compute-LCAD(𝑢)
29 𝑥 ← 𝑢;

30 while 𝑥 ≠ Null do
31 if D(𝑥) is defined then
32 D(𝑢) ← D(𝑥);
33 break;

34 𝑥 ← 𝑥 .𝑝𝑎𝑟𝑒𝑛𝑡 ;

35 if 𝑥 = Null then D(𝑢) ← −∞;
36 𝑥 ← 𝑢;

37 while 𝑥 ≠ Null do
38 if D(𝑥) is defined then break;
39 D(𝑥) ← D(𝑢), 𝑥 ← 𝑥 .𝑝𝑎𝑟𝑒𝑛𝑡 ;

40 return D(𝑢)
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To delete a non-tree edge, we first compute a candidate set of tree edges whose replacement

edges are expired (lines 11–14). Based on Lemma 3.2, the candidate includes all edges with the

replacement edge of 𝑒 in the path between two terminals of the deleted non-tree edge. Note that for

Case C.2, we initialize the replacement edge of the new tree edge as 𝑒 (line 8) so that the new tree

edge will be included in the candidate set. We rotate the tree so that the number of descendants of

every vertex in 𝑐𝑎𝑛𝑑 is less than half the size of the entire tree (lines 15–22). The main motivation of

the process is to bounded the subtree size of each candidate vertex, which is related to the efficiency

of searching replacement edges. A byproduct benefit is to reduce the average vertex depth of

the tree, which improves certain tree operations such as Cut() and Reroot(). The new tree root

partitions the candidates into two groups, and for any two candidates 𝑢, 𝑣 in the same group, 𝑢 is an

ancestor or a descendant of 𝑣 . We invoke the Search() procedure to update the replacement edges

for the input candidates in line 23. The properties of the bounded number of descendants and the

ancestor-descendant relationship within the group are crucial to achieve high theoretical efficiency

to find the replacement edge. The bounded number of descendants will support Lemma 4.14, and

the constrained vertex relationship within the same group will support Lemma 4.12.

4.5 Searching Replacement Edges
Given the candidate edges, the key step in edge deletion is how to compute their new replacement

edges. A straightforward method is to scan all non-tree edges in non-decreasing order of their

weights. We check if each edge can be the replacement edge of certain tree edges (i.e., the non-tree

edge and the candidate edge form a cycle). To this end, we scan all candidate edges in the path

between two terminals of each non-tree edge. The time complexity for this method is𝑂 (𝑚𝑛) because
we have 𝑂 (𝑚) non-tree edges, and searching the path on the tree takes 𝑂 (𝑛) time complexity.

The naive solution considers the replacement edge for each candidate tree edge independently

and omits the relationship between candidate tree edges. We now propose an improved approach

to compute replacement edges for a set of candidates. Given each candidate vertex 𝑢, the new

approach searches descendants of 𝑢 and checks if there is an edge from a descendant to 𝑇 \𝑇 (𝑢).
Cross Edge Verification. Given a descendant 𝑥 and a graph neighbor 𝑦 of 𝑥 , we first discuss how

to identify if𝑦 ∈ 𝑇 \𝑇 (𝑢). A straightforward method is to search from𝑦 to the root. If we never meet

𝑢, we have 𝑦 ∈ 𝑇 \𝑇 (𝑢). However, we may have multiple candidate vertices and many descendants

for each candidate. The straightforward method is costly. To improve the efficiency of verifying 𝑦,

we observe that the candidate vertices are in the path between two terminals of the deleted non-tree

edge. By rotating the tree (lines 15–22 of Algorithm 3), we can organize the candidates in an order

such that any candidate is the ancestor of all previous candidates. This candidate structure enables

sharing the computational cost of previously processed candidates. Instead of simply searching

from a vertex 𝑦 to the root, our optimized methods compute the following concept for a vertex.

Definition 4.8 (Lowest Candidate Ancestor Depth). Given a set of candidate vertices 𝐶 , the lowest

candidate ancestor depth (LCAD) of a vertex 𝑢, denoted by D(𝑢), is the depth of the first vertex 𝑣

in the path from 𝑢 to the root such that 𝑣 ∈ 𝐶 .

The D(𝑢) of a candidate vertex 𝑢 itself is the depth of 𝑢. We set D(𝑢) = −∞ if there is no

candidate in the path from 𝑢 to the root.

Lemma 4.9. Let 𝐶 be the candidate vertices such that for any two vertices 𝑢, 𝑣 ∈ 𝐶 , 𝑢 is either an
ancestor or a descendant of 𝑣 . Given 𝐶 , a vertex 𝑦 and a candidate vertex 𝑢 ∈ 𝐶 , we have 𝑦 ∈ 𝑇 \𝑇 (𝑢)
if and only if D(𝑦) < D(𝑢).

Example 4.10. Figure 5 shows an example of the lowest candidate ancestor depth. In this tree, 𝑣5
and 𝑣2 are two candidate vertices whose depths are 2 and 1, respectively. The LCAD of each vertex
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Fig. 5. An example of lowest candidate ancestor depth given the candidate vertices {𝑣2, 𝑣5}.
is shown in the figure. Assume we aim to identify whether 𝑣3 is in the subtree rooted by 𝑣5. By

comparing their LCADs, we observe that the LCAD of 𝑣3 is lower than that of 𝑣5, which indicates

that 𝑣3 is not a descendent of 𝑣5.

Lemma 4.9 gives a new way to verify the neighbor of a descendant, which enables avoiding

searching the same vertices. The procedure Compute-LCAD in Algorithm 4 computes the LCAD of

𝑢. Lines 32–37 iteratively scan the parent of 𝑥 to find the lowest candidate ancestor. If 𝑥 = Null, no
candidate ancestor is found, and we set D(𝑢) to −∞. Based on the definition of D(𝑢), the lowest
candidate ancestors for all vertices from 𝑢 to 𝑥 are also 𝑥 . Therefore, we set the LCAD of all of them

as D(𝑢) in lines 39–43. It is easy to see that the LCAD of any vertex is consistent given a specific

candidate set. Therefore, once the LCAD of a vertex 𝑢 is computed, we can constantly verify 𝑢 for

any other candidates and avoid searching from 𝑢 to the root.

Pruning Search Space. Even with a new method to verify cross edges, the descendant volume of

each candidate vertex can be very large. Next, we prune by searching for unnecessary descendants

by utilizing the existing replacement edges in the tree. We first give the following definition for

ease of presentation.

Definition 4.11 (Cross Edge). Given two disjoint vertex sets𝑋,𝑌 in a tree𝑇 , the cross edge, denoted

by 𝐸 [𝑋,𝑌 ], is a non-tree edge where two terminals are from different sets.

Given a replacement edge 𝑒 = 𝑣 .𝑟𝑒𝑝 , we have 𝑒 ∈ 𝐸 [𝑇 (𝑣),𝑇 \ (𝑣)] based on Definition 4.11. Let

𝐶 be the children vertices of 𝑣 . Given that 𝑇 (𝑣) contains 𝑣 and 𝑇 (𝑢) for all 𝑢 ∈ 𝐶 , we divide the
search space of 𝐸 [𝑇 (𝑣),𝑇 \ (𝑣)] into 𝐸 [{𝑣},𝑇 \ (𝑣)] and 𝐸 [𝑇 (𝑢),𝑇 \ (𝑣)] for all children vertices 𝑢

of 𝑣 . Searching in 𝐸 [{𝑣},𝑇 \ (𝑣)] is straightforward by scanning neighbors of 𝑣 . We now discuss

how to search in 𝐸 [𝑇 (𝑢),𝑇 \ (𝑣)], and our idea is motivated by the following lemma.

Lemma 4.12. Given a MST𝑇 and two nodes 𝑢, 𝑣 with 𝑢 ∈ 𝑇 (𝑣), for any edge 𝑒 from𝑇 (𝑢) to𝑇 \𝑇 (𝑣),
we have 𝑒.𝑤𝑒𝑖𝑔ℎ𝑡 ≥ 𝑢.𝑟𝑒𝑝.𝑤𝑒𝑖𝑔ℎ𝑡 .

Proof. If exist an edge 𝑒 from 𝑇 (𝑢) to 𝑇 \𝑇 (𝑣), and 𝑒.𝑤𝑒𝑖𝑔ℎ𝑡 < 𝑢.𝑟𝑒𝑝.𝑤𝑒𝑖𝑔ℎ𝑡 . Then 𝑒 is more

suitable as the new 𝑢.𝑟𝑒𝑝 than 𝑢.𝑟𝑒𝑝 . Therefore, such an edge 𝑒 does not exist. □

Lemma 4.12 implies a lower bound (𝑢.𝑟𝑒𝑝.𝑤𝑒𝑖𝑔ℎ𝑡 ) for the edge weight in 𝐸 [𝑇 (𝑢),𝑇 \𝑇 (𝑣)]. Note
that 𝑢.𝑟𝑒𝑝 may not be the cross edge of [𝑇 (𝑣),𝑇 \𝑇 (𝑣)], because both two terminals of 𝑢.𝑟𝑒𝑝 may

be in 𝑇 (𝑣). Once 𝑢.𝑟𝑒𝑝 is in 𝐸 [𝑇 (𝑢),𝑇 \𝑇 (𝑣)], we have that 𝑢.𝑟𝑒𝑝 is the edge with the minimum

weight in 𝐸 [𝑇 (𝑢),𝑇 \𝑇 (𝑣)], and we prune searching neighbors of all vertices in 𝑇 (𝑢).
Example 4.13. In the DMST of Figure 3, if we delete a non-tree edge 𝑔(𝑣3, 𝑣5, 6), we need to

update the replacement edges of 𝑒 (𝑣2, 𝑣5, 4), 𝑎(𝑣1, 𝑣2, 1), and 𝑏 (𝑣1, 𝑣3, 2) in the path between 𝑣3 and

𝑣5 because their replacement edge is 𝑔. We take the edge 𝑒 (𝑣2, 𝑣5, 4) as an example. We need to

search edges from 𝑇 (𝑣5) to 𝑇 \𝑇 (𝑣5) and find a new 𝑟𝑒𝑝 for 𝑒 . We divide 𝑇 (𝑣5) into {𝑣5} and 𝑇 (𝑣6)
because 𝑣5 only has one child 𝑣6. For 𝑣5, there is no non-tree neighbor. For 𝑇 (𝑣6), we observe

that the 𝑟𝑒𝑝 of 𝑣6 is𝑚(𝑣6, 𝑣4, 8), which indicates𝑚 is the cross edge with the minimum weight

in 𝐸 [𝑇 (𝑣6),𝑇 \ 𝑇 (𝑣6)]. Given that 𝑣4 is in 𝑇 \ 𝑇 (𝑣5),𝑚 is also the cross edge with the minimum
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weight in 𝐸 [𝑇 (𝑣6),𝑇 \𝑇 (𝑣5)], and we do not need to search any descendant of 𝑣6. Edge𝑚 is the

final replacement edge of 𝑒 .

The Final Algorithm. Based on Lemma 4.12, we propose a bottom-up algorithm to compute

replacement edges of candidate vertices. The bottom-up strategy guarantees that when computing

the replacement edge of a vertex 𝑣 , the replacement edges of all descendants are available. The

pseudocode of our improved searching algorithm is presented in Algorithm 4. Based on Lemma 4.9,

the algorithm requires that the input candidate vertices are in a path from a vertex to the root.

As mentioned in Section 4.4, lines 15–22 of Algorithm 3 guarantee the input candidate vertices of

Algorithm 4 are in a path from a vertex to the root.

In Algorithm 4, we first assign the depth for each candidate. A practical optimization here is that

we only compute the relative depth of candidates (lines 1–2) instead of the real distance to the root

because we only compare depths between candidates in the algorithm based on Lemma 4.9.

Lines 4–27 compute the replacement edge for the candidate 𝑢. The variable 𝑢𝑟𝑤 maintains

the weight of the potential replacement edge of 𝑢 in iterations and will decrease to the correct

value. We adopt an A* search paradigm with the weight lower bound of cross edges (Lemma 4.12).

Specifically, we use a priority queue where the value of each item is a descendant 𝑥 of 𝑢, and the

key is the weight of 𝑥 .𝑟𝑒𝑝 , which is the lower bound of the edge weight in 𝐸 [𝑇 (𝑥),𝑇 \𝑇 (𝑢)]. In
each round of line 6, we get the item with the lowest key (weight). Once the lower bound 𝑥𝑟𝑤

is already not smaller than the current replacement edge weight 𝑢𝑟𝑤 (line 8), we break the loop

and 𝑢.𝑟𝑒𝑝 is already found. In line 10, we find the replacement edge of the descendant 𝑥 of 𝑢. We

apply Lemma 4.12 in line 11. If the condition holds, 𝑡 is not in 𝑇 (𝑢) so that 𝑥 .𝑟𝑒𝑝 is a cross edge in

[𝑇 (𝑢),𝑇 \𝑇 (𝑢)]. We break the loop line line 15 since the replacement edge 𝑢.𝑟𝑒𝑝 is found.

Lines 14–27 search neighbors of 𝑥 . If the neighbor 𝑦 is a child of 𝑥 (line 17), we consider adding

𝑦 to the priority queue. Line 18 means there is no edge connecting the subtree of 𝑦 to any other

vertices outside, and searching cross edges from 𝑦 is pruned. 𝑦 is added to the priority queue

only if the weight of 𝑦.𝑟𝑒𝑝 is smaller than the current replacement weight 𝑢𝑟𝑤 (lines 19–20) since

𝑦.𝑟𝑒𝑝.𝑤𝑒𝑖𝑔ℎ𝑡 is a lower bound for those from all descendants of 𝑦.

Lines 22–27 search non-tree neighbors of 𝑦. Note that we store neighbors of each vertex in non-

decreasing order of their weights. 𝑛𝑡_𝑠𝑒𝑎𝑟𝑐ℎ in line 22 indicates if a valid cross edge (replacement

edge) has been found in earlier rounds of scanning non-tree neighbors. If so, we skip searching

non-tree neighbors. Line 23 indicates we already have a smaller weight of the replacement edge. In

line 24, 𝑥𝑟𝑤 is the replacement edge weight of 𝑥 . 𝑥𝑟𝑤 > 𝑦𝑤 indicates that𝑦 is also in the descendant

of 𝑥 . Otherwise, 𝑥𝑟𝑤 would decrease to 𝑦𝑤 . Therefore, 𝑦 is also the descendant of 𝑢 and (𝑥,𝑦,𝑦𝑤)
cannot be the replacement edge of 𝑢. We check if 𝑦 is not in 𝑇 (𝑢) in line 25. If so, we find a new

potential replacement edge with a smaller weight and update the current results 𝑢.𝑟𝑒𝑝 and 𝑢𝑟𝑤 .

Lemma 4.14. The expectation of the number of iterations in line 6 of Algorithm 4 is less than 2.

Proof. According to lines 9–13 of Algorithm 4, we can terminate the search of the subtree rooted

at 𝑥 . In combination with the operation of rotating the tree in lines 15–22 of Algorithm 3, we can

guarantee that the size of the subtree rooted at 𝑥 is less than half of the size of the whole tree (lines

9–13 of Algorithm 4). Therefore, it is more than 1/2 probability that an edge (𝑠, 𝑡) is a cross edge,
i.e., the expectation of the number of iterations in line 6 of Algorithm 4 is less than 2. □

Lemma 4.15. The complexity of the loop shown in lines 15–27 in Algorithm 4 is 𝑂 (ℎ + 𝑑), where 𝑑
is the average degree of a vertex.

Proof. In the loop shown in lines 15–27 of Algorithm 4, we need to traverse all neighbors of

vertex 𝑥 . Each visit can be completed in 𝑂 (1) if the edge visited is a tree edge. If the edge is a

Proc. ACM Manag. Data, Vol. 3, No. 1 (SIGMOD), Article 54. Publication date: February 2025.



Minimum Spanning Tree Maintenance in Dynamic Graphs 54:17

Dataset name 𝑛 𝑚 𝑑 Type 𝑐 𝑤𝑡 𝑛𝑡 ℎ

advogato
1

AD 6,541 39,284 6.006 Static, Trust network 0.350 1.192 0.826 5.951

bitcoinotc
1

BI 5,881 21,491 3.654 Static, Trust network 0.672 1.214 1.015 8.266

retweet
2

RE 256,490 327,373 1.276 Static, Social 1.529 1.251 0.534 6.665

orkut
1

OR 3,072,441 117,184,898 38.141 Static, Social 0.408 1.679 0.201 92.247

amine
3

AM 92,830,928 323,836,570 3.488 Static, Academic 0.656 1.116 0.818 15.705

road-asia-osm
2

AS 11,950,758 12,711,603 1.064 Static, Road 68.283 22.327 0.029 29043.425

road-road-usa
2

US 23,947,348 28,854,312 1.205 Static, Road 86.452 103.612 0.077 29786.957

spotify
3

SP 3,604,454 1,927,482,012 534.750 Static, Music 0.005 1.057 0.959 8.713

edit-zhwikibooks
1

BO 14,127 53,881 3.814 Temporal, Edit 0.691 1.506 1.191 4.009

edit-rowiktionary
1

RO 166,856 918,811 5.507 Temporal, Edit 0.367 1.111 0.763 6.918

soc-flickr-growth
2

FL 2,302,926 33,140,017 14.390 Temporal, Social 0.940 0.232 0.650 12.258

dynamic-dewiki
1

DY 2,166,670 86,337,879 39.848 Temporal, Hyperlink 0.127 0.001 0.963 4.896

soc-bitcoin
2

BT 24,575,383 122,948,162 5.003 Temporal, Transaction 2.730 0.313 0.480 74.884

delicious-ui
1

UI 34,611,304 301,186,579 8.702 Temporal, Interaction 0.290 0.065 0.738 60.230

delicious-ti
1

TI 38,289,742 301,183,605 7.866 Temporal, Feature 0.285 0.031 0.681 20.014

edit-enwiki
1

ED 50,757,444 572,591,272 11.281 Temporal, Edit 0.144 0.039 0.798 10.309

Table 2. The Description of Dataset. 𝑑 = 𝑚
𝑛 where𝑚 is the number of edges and 𝑛 is the number of vertices.

𝑐 is the average size of 𝑐𝑎𝑛𝑑 in Algorithm 3.𝑤𝑡 is the average number of iterations in line 6 of Algorithm 4.
𝑛𝑡 is the average of executions of Compute-LCAD in the loop shown in lines 17–30 in Algorithm 4. ℎ is the
average vertex depth in DMST.

non-tree edge, then this visit needs to call Compute-LCAD, which can be completed in 𝑂 (ℎ). For
traversals of non-tree edges, it can be terminated early at line 22. Similarly to Lemma 4.14, In lines

25–27, edge(𝑥,𝑦) lies in 𝐸 [𝑇 (𝑥),𝑇 \𝑇 (𝑢)] with probability more than 1/2. Therefore, the expected

number of executions of Compute-LCAD is 2. The time complexity of the entire loop shown in

lines 15–27 is 𝑂 (ℎ + 𝑑). □

Theorem 4.16. The time complexity of Algorithm 3 is 𝑂 (ℎ(ℎ + 𝑑)).

Proof. In Algorithm 3, the operation of deleting tree edges utilizes only the base operations,

which are 𝑂 (ℎ). For the operation of deleting non-tree edges, we first traverse the path on the

spanning tree of the two vertices of the deletion edge. Its complexity is 𝑂 (ℎ), and the size of the

resulting 𝑐𝑎𝑛𝑑 is also 𝑂 (ℎ). Clearly, the complexity of Compute-LCAD is 𝑂 (ℎ). From Lemma 4.14,

the expected number of loops for line 6 of Algorithm 4 is 2. From Lemma 4.15, the complexity of

the loop shown in lines 15–27 in Algorithm 4 is𝑂 (ℎ +𝑑). Therefore, the complexity of Algorithm 4

is still 𝑂 (ℎ + 𝑑). In Algorithm 3, Algorithm 4 needs to be executed 𝑂 (ℎ) times, and the complexity

of the whole Algorithm 3 is 𝑂 (ℎ(ℎ + 𝑑)). □

Parallel processing is a common way to speed up the algorithm in practice. However, extending

our algorithm to a highly parallel version is challenging given several dependencies in the updating

process. For example, a key step is to find a cycle in the tree formed by a non-tree edge (𝑢, 𝑣) (e.g.,
inserting a new edge). Each node is identified by the parent pointer of its child node in the cycle. In

Algorithm 4, searching replacement edge for deep tree nodes serves the processing of shallow tree

nodes, i.e., both the updated 𝑟𝑒𝑝 and the LCAD contribute to updating the replacement edge for

ancestor tree nodes. Therefore, a totally different computing framework is required to utilize the

computing power of multi threads for MST maintenance. We will study the parallel techniques in

future works.

5 Performance Studies
Setup. All algorithms are implemented by C++ and compiled with O3 level optimization. The

experiments are conducted on a single machine with Intel 2.50GHz and 768GB RAM. All results

are the average values by running 10 times on the same machine.
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Fig. 6. Delete time of unlabeled graphs
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Fig. 7. Insert time of unlabeled graphs

10
-4

10
-3

10
-2

10
-1

10
0

10
1

10
2

INF

AD BI RE OR AM AS US SP

Base Rec HDT Wo Si DMST Data

M
em

o
ry

 (
G

B
)

Fig. 8. Memory usage of unlabeled graphs
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Fig. 9. Average update time (95% insertions and 5% deletions)
Dataset.We evaluate sixteen real datasets from different domains (Table 2). They can be found

konect
1
, Network Repository

2
and CORNELL

3
. Eight out of sixteen datasets are temporal graphs,

and the rest are unlabeled graphs. For some graphs without weights, we randomly assign a weight

to each edge.

Competitors. We evaluate the performance for the following methods:

- DMST. Our final algorithm includes all optimizations.

- Base. The basic algorithm discussed in Section 3.3.

- Rec. Computing MST from scratch for each update.

- HDT. The algorithm proposed by Holm et al [16, 19]. We made an implementation of the code

based on [4, 18].

- Wo. A theoretical approach focuses on worst-case update complexity of MST [27].

- Si. A practical simple method proposed in [4].

- Ba. A method that supports batch updating of edges [25].

- We. A method that maintains MST, but can only support changes in edge weights [31, 35].
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Fig. 10. Delete time of temporal graphs
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Fig. 11. Insert time of temporal graphs
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Fig. 12. Memory of temporal graphs
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Fig. 13. Update time (vary window size)
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Fig. 14. Delete time (vary vertices)
5.1 Performance in Real Graphs
Unlabeled graph. For a general unlabeled graph, we first build an index with all the edges of the

entire dataset. Then we randomly delete 1, 000, 000 edges and then insert those 1, 000, 000 edges

back into the graph (For some small datasets, such as AD, BI and RE, the number is 10, 000). We

calculate the average running time for insertions and deletions, respectively. We do not report the

results of tests that take longer than 12 hours. All subsequent experiments also follow this setting.

1
http://konect.cc/networks/

2
https://networkrepository.com/

3
https://www.cs.cornell.edu/∼arb/data/

Proc. ACM Manag. Data, Vol. 3, No. 1 (SIGMOD), Article 54. Publication date: February 2025.



54:20 Lantian Xu et al.

10
-8

10
-7

10
-6

10
-5

10
-4

10
-3

10
-2

10
-1

INF

20%
40%

60%
80%

100%

Base
Rec

HDT
Wo

Si
DMST

In
se

rt
 T

im
e
 (

se
c
)

(a) RE

10
-7

10
-6

10
-5

10
-4

10
-3

INF

20%
40%

60%
80%

100%

Base
Rec

HDT
Wo

Si
DMST

In
se

rt
 T

im
e
 (

se
c
)

(b) AM

10
-7

10
-6

10
-5

INF

20%
40%

60%
80%

100%

Base
Rec

HDT
Wo

Si
DMST

In
se

rt
 T

im
e
 (

se
c
)

(c) SP

Fig. 15. Insert time (vary vertices)
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Fig. 16. Delete time (vary edges)

10
-8

10
-7

10
-6

10
-5

10
-4

10
-3

10
-2

10
-1

INF

20%
40%

60%
80%

100%

Base
Rec

HDT
Wo

Si
DMST

In
se

rt
 T

im
e
 (

se
c
)

(a) RE

10
-7

10
-6

10
-5

INF

20%
40%

60%
80%

100%

Base
Rec

HDT
Wo

Si
DMST

In
se

rt
 T

im
e
 (

se
c
)

(b) AM

10
-7

10
-6

10
-5

10
-4

INF

20%
40%

60%
80%

100%

Base
Rec

HDT
Wo

Si
DMST

In
se

rt
 T

im
e
 (

se
c
)

(c) SP

Fig. 17. Insert time (vary edges)

Figure 6 shows the average time of the edge deletion. On all datasets, the deletion efficiency

of DMST is significantly higher than that of other methods. Since DMST can efficiently find and

update replacement edges, great speedups are achieved on large datasets, e.g., AM and SP. Even

the time complexity of HDT looks good, but its practical efficiency is limited. In some cases, it is

even worse than Rec. Wo is also not practical. Si demonstrates good deletion efficiency, especially

in road networks, but still slightly worse than DMST.

Figure 7 shows the average time of edge insertion. DMST is more efficient than the other

algorithms. This indicates that there is little overhead in maintaining replacement edges in the

insert edge operation. Overall, insertion is more efficient than deletion for HDT and DMST. For

DMST, the average insertion time is approximately an order of magnitude faster than the average

deletion time. This result is exactly in line with our previous analysis of time complexity.

Figure 8 shows the memory of the six methods. HDT has the most complex structure. The

memory usage of Base, Rec and DMST does not differ much from the size of the original dataset.

This indicates that DMST achieves efficient update efficiency with little memory overhead.

Figure 9 shows the average update time when mixing a large number of insertions and a small

number of deletions, which may be common in practice. Each dataset is updated with 10,000 edges,

of which 95% are insertions and 5% are deletions. Since deletions are much slower than insertions,

even a small number of deleted edges can have an impact on the overall average update speed.

Temporal graph.We also evaluate several temporal graphs. First, we insert all the edges one by

one in the original chronological order and compute the average time of an insert operation. Finally,

we continuously delete the oldest edge until the graph is empty. The average times of edge deletion

and edge insertion are reported in Figure 10 and 11, respectively. Figure 12 shows the memory

usage. The results are similar to unlabeled graphs. DMST is clearly superior to other algorithms.
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Fig. 18. Update time (𝑘-clique)
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Fig. 20. Edge weight update time
Important Indicators. Table 2 shows four important indicators in different graphs. For temporal

datasets, these indicators refer to the case where the time window is set to 40%. We can see that

both𝑤𝑡 and 𝑛𝑡 are small and can be regarded as constants, which is consistent with Lemma 4.14

and Lemma 4.15. 𝑐 is also a small number. This means that for many datasets, one update does

not result in a large number of replacement edges needing to be updated. Many datasets have 𝑐 of

less than 1. The level of update efficiency is most strongly related to the average depth ℎ, and this

experiment proves that for most datasets, ℎ is not large.

5.2 Performance in Sliding Windows
We investigate six algorithms over different sizes of sliding windows in temporal graphs. For each

temporal graph, we first compute the time span for the dataset. Next, we vary the window size in

5%, 10%, 20%, 40% and 80% of its time span. We insert all edges in chronological order. When the

time difference between the inserted new edge and the oldest edge in the window is greater than

the time window size, the old edge is deleted. We record the average time of a sliding operation

(inserting a new edge and deleting an expired edge). We report three representative datasets given

the space limitation.

Figure 13 illustrates the update efficiency for different window sizes on three datasets: BO, RO

and UI. DMST remains far more efficient than other algorithms. As the window increases, the

number of edges in a window increases. The efficiency of Base and Rec decreases as the window

size gets larger. In contrast, the update efficiency of HDT and DMST remains stable.

5.3 Scalability Testing
In the scalability test experiment, we test the scalability of three representative large datasets (RE,

AM, SP) by randomly sampling their vertices and edges from 20% to 100%. The average running

time is calculated in the same way as for the unlabelled graph in Section 5.1.

Deletion. Figure 14 and Figure 16 show the deletion time of different scales. Among these algo-

rithms, DMST demonstrates the optimal performance. With the increase of vertices (edges), the

deletion time of the other algorithms increases, while the time of DMST is more stable.

Insertion. Figure 15 and Figure 17 show the average insert time of different scales. The performance

of DMST is more stable and significantly better than the other algorithms. As the number of vertices

(edges) grows, the insertion and deletion times show similar trends.

5.4 Performance in 𝑘-clique graph
In [4], 𝑘-clique graph is defined to test the update efficiency of MST maintenance algorithms when

replacement edges are hard to find. Given a size threshold 𝑐 , a 𝑘-clique graph contains 𝑘 𝑐-cliques

and these cliques are connected with 2𝑘 inter-clique edges. The inter-clique edges are assigned

weights that are larger than those of the intra-clique edges, making it more challenging to find a

replacement for a deleted inter-clique edge. We build a 𝑘-clique graph 𝐺 with five 200-cliques and

10 inter-clique edges. Similar as previous experiments, we delete 10,000 edges and insert the 10,000

edges back to𝐺 . This process is repeated six times. In each update, the percentage of inter-clique
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edges is 0%, 20%, 40%, 60%, 80% and 100%, respectively. Figure 18 shows the total update time for

these updates. It is clear that DMST is still works well when updating the inter-clique edges.

5.5 Performance of other types of updates
As we mentioned before, vertex insertions, vertex deletions, and updates of edge weights can

be transferred into edge insertions and deletions. We compare our algorithm with two existing

algorithms designed to update vertices and edge weights, respectively.

Vertex updates. We compare DMST with the method proposed in [25]. For each dataset, we

randomly selected 1,000 vertices, deleted them all and reinserted them. Figure 19 shows the average

update time of a vetex. "-D" means vertex deletion. "-I" means vertex insertion. DMST performs

better at both deletion and insertion.

Weight updates. We compare DMST with the method proposed in [31] for edge weight updates.

For each dataset, we randomly selected 1,000 edges. We double the weights of these edges and

change them back to their original weights. Figure 20 shows the average update time of an update.

"-D" indicates a decrease in weight. "-I" indicates an increase in weight. The efficiency of weight

reduction in DMST is similar to that of We. DMST is much faster than We in terms of weight

increase.

6 Conclusion
This paper proposes a new data index for maintaining minimum spanning trees in full dynamic

graphs. Our main idea is to index a replacement edge for each tree edge. The structure helps

identify the replacement edge in constant time when a tree edge is deleted. We propose efficient

algorithms to efficiently maintain replacement edges for all tree edges in insertion and deletion.

Our experimental results demonstrate the significant advantage of our algorithms on real large

datasets.
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